

Fast Object Detection Algorithm using Edge-based Operation Skip Scheme with Viola-Jones Method

<u>Cheol-Ho Choi</u>*, Joonhwan Han, Jeongwoo Cha, Jungho Shin, and Hyun Woo Oh <u>cheoro1994@hanwha.com</u>

Core H/W Team, Pangyo R&D Center Hanwha Systems Company, Ltd.

2024 IEEE International Conference on Artificial Intelligence Circuits and Systems

Motivation (1/2)

- European New Car Assessment Programme (Euro-NCAP)[1]
 - Child presence detection system (CPD, after 2025)
 - Direct sensing (ex. Pressure sensor)
 - Indirect sensing (ex. Camera sensor)
 - To meet the requirements, an object detection algorithm must be included in the product
 - Low-cost for mass production
 - Reasonable detection performance

Fig 1. Euro ENCAP Standard

Motivation (2/2)

Algorithm Selection

- Low-cost
 - A small number of parameters for classification (for memory capacity)
 - Fewer classification operations (for processor cost)
- Fast processing speed
- Reasonable detection performance
- →Among machine learning algorithms, we select Viola-Jones method
 - Haar-like features
 - Cascade classifier architecture

2. Background

Background (1/3)

- Haar-like Rectangle Features^[2]
 - Suitable for machine learning classifier models
 - Cascade Classifier
 - SVM (support vector machine)
 - Fast processing speed performance
 - Summed-area table (integral image)
 - Reasonable detection performance
 - Brightness difference for target-oriented train feature generation

Fig 2. Rectangle Haar-like feature examples

[2] P. Viola and M. Jones, "Rapid Object Detection using a Boosted Cascade of Simple Features," in Proc. IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR), 2001.

Background (2/3)

- Cascade Classifier Architecture^[3] (1/2)
 - Consists of multiple strong classifiers for step-by-step classification process
 - A strong classifier consists of trained Haar-like features
 - When the window satisfies all the strong classifier threshold values → True
 - When the window is not satisfies all the strong classifier threshold values → False

Fig 3. Cascade Classifier Architecture

[3] P. Viola and M. Jones, "Robust Real-time Face Detection," International Journal of Computer Vision, 56, 2024.

Background (3/3)

- Cascade Classifier Architecture^[3] (2/2)
 - Advantage
 - Pipeline and parallel computation architectures can be designed
 - Reasonable detection performance by using step-by-step classification process
 - Disadvantage (Processing speed performance degradation)
 - Processing time increases when the input image resolution is larger
 - Processing time increases when the number of classification iteration is increased

Fig 3. Cascade Classifier Architecture

3. Proposed Algorithm

Proposed Algorithm (1/3)

Edge Component Calibration

- Introduced the calibration concept^[4]
- 2-D Haar wavelet transform is used
 - Reduce the original input image resolution
 - Generate the image pyramid
- Rectified Linear Unit (ReLU)
 - Extract the positive edge component values (horizontal, vertical, and diagonal directions)
- Merged edge computation

•
$$I_M = I_{R.H} + I_{R.V} - I_{R.D}$$

- Edge component calibration
 - $I_O = I_A + I_M$

Fig 4. Proposed edge component calibration process

[4] C.-H. Choi, et al., "Face detection using haar cascade classifiers based on vertical component calibration," *Human-centric Computing and Information Sciences (HCIS)*, **12**(11), 2022.

Proposed Algorithm (2/3)

- Edge-based Operation Skip (1/2)
 - Reference coordinate is selected by using hyper-parameters
 - α : factor for selecting the vertical direction coordinate
 - β : factor for selecting the horizontal direction coordinate
 - Based on reference coordinate, extract the reference edge component value

Fig 5. Proposed edge-based operation skip scheme process

Proposed Algorithm (3/3)

- Edge-based Operation Skip (2/2)
 - Operation mode
 - When the reference edge component value is positive
 - By-pass mode (operation skip mode)
 - When the reference edge component value is negative

Fig 6. Proposed edge-based operation skip scheme process

4. Experimental Results

Experimental Results (1/4)

Environment

- 'haarcascade_frontalface_alt.xml'
 - The number of strong classifiers: 22
 - Square window size: 20
- Hyper-parameters
 - $\alpha : 0.5$
 - *β* : 0.05
 - Intersection over union (IoU): 0.5
- Test Frames
 - Lena
 - Solvay Conference 1927

Experimental Results (2/4)

Test Frame (Lena)

- Precision
 - Conventional: 12.5%
 - Hyun^[5]: 12.5%
 - Choi^[4]: 50%
 - Proposed: 100%

Recall

- Conventional: 100%
- Hyun^[5]: 100%
- Choi^[4]: 100%
- Proposed: 100%

Fig 7. Experimental results using the Lena test frame: (a) conventional, (b) Hyun, (c) Choi, and (d) Ours

[5] J. Hyun, et al., "Hardware architecture of a Haar Cascade Classifier based Face Detection System using a Skip Scheme," in Proc. IEEE International Symposium on Circuits and Systems (ISCAS), 2021.

Experimental Results (3/4)

Test Frame (Solvay Conference 1927)

- Precision
 - Conventional: 64.44%
 - Hyun^[5]: 64.44%
 - Choi^[4]: 90.63%
 - Proposed: 96.67%

Recall

- Conventional: 100%
- Hyun^[5]: 100%
- Choi^[4]: 100%
- Proposed: 100%

Fig 8. Experimental results using the Solvay Conference 1927 test frame: (a) conventional, (b) Hyun, (c) Choi, and (d) Ours

Experimental Results (4/4)

Iteration Number Comparison

- Lena
 - Reduction percentage (Minimum): 31.38% (vs. Choi^[4])
 - Reduction percentage (Maximum): 84.73% (vs. Conventional)
- Solvay conference 1927
 - Reduction percentage (Minimum): 36.63% (vs. Choi^[4])
 - Reduction percentage (Maximum): 85.78% (vs. Conventional)

Table 1. The number of classification iteration when using conventional and proposed methods

Frame	Works			
	Traditional ^[2,3]	Hyun ^[5]	Choi ^[4]	Ours
Lena	15,502,079	15,480,375	3,450,202	2,367,604
	(≅ 15.50M)	(≅ 15.48M)	(≅ 3.45M)	(≅ 2.37M)
Solvay Conference 1927	73,465,180	73,094,971	16,481,076	10,443,967
	(≅ 73.47M)	(≅ 73.09M)	(≅ 16.48M)	(≅ 10.44M)

Conclusion

Advantages

- Proposed method can enhance processing speed by reducing the number of classification iterations
- Proposed method exhibits better detection performance, consisting of precision and recall

Limitation

- Do not use public dataset
- Future Works
 - Conduct additional experiments using public datasets
 - Create dataset based on long-wave infrared (LWIR) thermal camera for satisfying CPD standard of Euro-NCAP

Q&A