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Abstract—This paper presents a real-time embedded thermal
imaging system architecture for compact, energy-efficient, high-
quality imaging utilizing heterogeneous system-on-chip (SoC) and
uncooled infrared focal plane arrays (IRFPAs). Unlike previous
systems that organized separate devices for complex image
processing, our system provides integrated image processing
support for robust sensor-to-surveillance. The image processing
organizes two algorithm stacks: a non-uniformity correction
stack to mitigate the distinctive noise vulnerabilities of uncooled
IRFPAs, and an image enhancement stack including contrast
enhancement and temporal noise filters. We optimized these
algorithms for domain-specific factors, including asymmetric
multiprocessing (AMP), cache organization, single instruction
multiple data (SIMD) instructions, and very long instruction
word (VLIW) architectures. The implementation on the TI
TDA3x SoC demonstrates that our system can process 640×480,
60 frames per second (FPS) videos at a peak core load of 57.5%
while consuming power less than 2.2 W for the entire system,
denoting the possibility of processing the 1280×1024, 30 FPS
videos from the cutting-edge uncooled IRFPAs. Additionally, our
system improves power efficiency by 9.42% and 9.96% at 30
and 60 FPS, respectively, compared to the state-of-the-art when
executing similar image processing algorithms.

Index Terms—Thermal Imaging, Image Processing, Heteroge-
neous Computing, SIMD, Real-Time Embedded Systems.

I. INTRODUCTION

Recent advancements in thermal imaging, driven by the
development of uncooled infrared focal plane arrays (IRFPA),
have extended their application beyond traditional safety and
military uses. These IRFPAs, which operate without ther-
moelectric coolers, enable more compact and cost-effective
designs, opening new possibilities in fields such as advanced
driver assistance systems (ADAS) [1], the Internet of Things
[2], night vision [3], and computer vision [4]–[6].

However, thermal imaging systems face notable challenges
that limit performance and practical utilization. One major
challenge is the demanding workload of non-uniformity cor-
rection (NUC) required to address uncooled IRFPAs’ noise
vulnerability. This noise, mainly consisting of fixed-pattern
noise (FPN) [7] and thermal drift noise (TDN) [8], signifi-
cantly degrades image quality [9], [10]. While practical, tradi-
tional pixel-wise NUC approaches using calibrated coefficients
are computationally intensive due to large memory footprints,
limiting use in compact, real-time systems. Though studies
have proposed scene-based NUCs reducing the footprints and
are optimized for hardware acceleration, those possess adverse
effects due to reliance on convergence for guided images [11].

Moreover, achieving high-quality thermal imaging neces-
sitates advanced contrast enhancement algorithms to address
the narrow dynamic range of intensity distribution [12]–[14].
These algorithms are crucial not only for enhancing surveil-
lance but also for improving machine learning applications,
underscoring the importance of high-performance contrast en-
hancement [15]. However, these algorithms require substantial
computing power, posing a challenge for real-time imaging
systems that must balance compactness with consistent opera-
tional performance. Prevailing compact imaging systems com-
promise by limiting their functions to basic NUC algorithms
and simple contrast enhancements, e.g., histogram equalization
(HE), relegating more advanced algorithms to auxiliary high-
performance devices, such as field-programmable gate arrays
(FPGA) [3], [16]–[21] and graphics processing units (GPU)
[1], [22]. This separation degrades cost-effectiveness and en-
ergy efficiency and increases the overall system volume and
power consumption. Although integrated solutions on single
FPGAs [23]–[25] have been explored, including our previous
work [24], they still struggle to manage intensive algorithms.

To address these limitations, we introduce an integrated
hardware/software (HW/SW) system architecture for real-
time thermal imaging, utilizing an embedded heterogeneous
system-on-chip (SoC) and uncooled IRFPA. Our approach
consolidates high-performance NUC and advanced image pro-
cessing algorithms within a compact, energy-efficient frame-
work, eliminating the need for external high-performance
devices. Implemented on TI’s TDA3x SoCs, our system suc-
cessfully processes 640×480 resolution videos at 60 frames
per second (FPS), utilizing a maximum core load of 57.5%
and consuming power less than 2.2 W for the total system.
This performance indicates our system’s suitability for com-
pact applications and the potential for further refinement to
accommodate higher-resolution videos.

The primary contributions of this work are listed as follows:
• An energy-efficient HW/SW architecture for compact,

real-time thermal imaging based on heterogeneous SoCs.
• A fully integrated image processing architecture from

uncooled IRFPA sensor to surveillance.
• Domain-specific software implementations of NUC and

image enhancement algorithms for single instruction mul-
tiple data (SIMD) operations and very long instruction
word (VLIW) processor architectures, enabling real-time
execution of intensive algorithms.
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II. RELATED WORKS AND MOTIVATIONS

A. Real-time Thermal Image Processing
1) Compact Thermal Imaging Systems: Compact thermal

imaging predominantly relies on FPGAs, as evidenced by
the works in [23]–[25]. One state-of-the-art (SOTA) system
integrates NUC with two-point correction (TPC) and run-time
defect pixel correction (DPC) alongside the HE for contrast
enhancement, achieving 640×480 resolution at 30 FPS with
a power consumption of 1.8 W for the FPGA chip [23]. Our
previous study utilized an SoC FPGA, combining advanced
NUC including thermal drift compensation (TDC), TPC, and
hybrid DPC, with min-max stretching for contrast, achieving
640×480 at 60 FPS with 2.098 W power for the FPGA [24].

These approaches have advanced compact thermal imaging
but have revealed a critical trade-off between economic, energy
costs, and performance. Existing systems often rely on basic
contrast enhancement techniques, such as the HE and the
min-max stretching, which perform only global enhancement
but sacrifice local detail, restricting their applicability in di-
verse scenarios. This necessitates sophisticated algorithms for
high-quality imaging and highlights the need for more cost-
effective, adaptable platforms, such as heterogeneous SoCs,
which reduce economic and energy costs and improve quality.

2) Advanced Contrast Enhancement Techniques: The de-
mand for high-quality thermal imaging across various appli-
cations has led to the adoption of advanced techniques such
as contrast-limited adaptive histogram equalization (CLAHE).
The CLAHE significantly improves image quality by applying
tiled HE and interpolating those tiles [26], [27], and has
been widely used across various domains, including thermal
imaging [26], [27]. Despite its effectiveness, the computational
demands of the CLAHE traditionally necessitated powerful
hardware, such as FPGAs, for real-time embedded video
applications. Pioneering work [18] and subsequent studies
[19]–[21] have extended these capabilities, culminating in
SOTA systems processing 3840×2160 60 FPS videos [21].

However, relying on FPGA-based solutions poses chal-
lenges for developing compact, cost-effective systems. Even
lower-cost FPGA solutions, such as [16], have yet to fully
address concerns on energy efficiency and overall system costs
compared to standalone SoC solutions without auxiliary high-
performance devices. Recognizing the potential of embedded
lightweight heterogeneous SoCs, our work explores their fea-
sibility for effectively deploying CLAHE. Consequently, this
work introduces an optimized SW implementation for real-
time processing on a heterogeneous SoC platform.

B. Embedded Heterogeneous SoCs
Various systems based on heterogeneous SoCs have been

proposed in response to the demand for balancing throughput,
energy efficiency, and cost [28]. For compact systems, some
exclude application-level cores and GPUs to save power and
reduce size while including microcontroller-level and DSP
cores for adequate processing capabilities. The work in [29]
applied one such SoC, the TI TDA3x, for ADAS applications,
showcasing the efficiency of lightweight heterogeneous SoCs.

1) Software Optimization for DSP: Modern DSPs combine
SIMD and VLIW concepts, offering a general-purpose solu-
tion with higher energy efficiency than scalar processor cores.
This attribute makes them attractive for diverse applications,
such as machine learning [30], databases [31], error detection
[32], and image processing [33], [34].

Vectorization plays a crucial role in SIMD architectures.
Recent works have focused on auto-vectorization at the com-
piler level [35], [36] to enhance domain-agnostic cases us-
ing high-performance superscalar cores based on Intel AVX
ISA. However, these enhancements primarily benefit high-
performance cores, leaving the potential for further efficiency
gains in energy-efficient VLIW processors. We have explored
manual techniques to efficiently order the VLIW-optimized
vectorization of the compiler, i.e., instruction packing, for
lightweight DSPs executing various fixed-point kernels.

2) Vision Accelerator: Work in [37] designed a hardware
accelerator, embedded vision engine (EVE), for vision appli-
cations. This tightly couples a RISC core (ARP32) with a
programmable 16-way vector coprocessor (VCOP) operating
in parallel. The VCOP uses a hardwired SIMD datapath
connected to cache memory independent of system memory,
enabling fast 16-way 32-bit operations and minimizing cache
overheads, ideally achieving 4-5× the throughput compared to
equivalent DSPs. Our work leverages EVE’s computing power
for intensive image processing, resulting in lower latency and
power consumption than a DSP-only implementation.

III. SYSTEM ARCHITECTURE

A. Image Processing Architecture

As illustrated in Fig. 1, our image processing architecture
encompasses two primary algorithm stacks: the NUC stack and
the image enhancement stack. The former mitigates the intrin-
sic non-uniformities of IRFPA caused by various origins, while
the latter enhances images to achieve multiple objectives.

1) Non-uniformity Correction: The NUC stack consists of
the TDC, TPC, flat field correction (FFC), and DPC.

- TDC: The TDC mitigates unintended response variations
due to temperature changes in the IRFPAs, utilizing a poly-
nomial fitting [38] where the IRFPA temperature (TFPA) is
variable. By adjusting the axis using the subtraction of a
reference temperature (TRef ) from the TFPA, we reduce the
dynamic range of coefficients, minimizing quantization errors.

- TPC: The TPC corrects the FPN, which primarily orig-
inates from the readout integrated circuit (ROIC) [39], [40].
By applying calibrated gain and offset values, TPC aligns each
pixel’s response to a reference linear model, alleviating spatial
non-uniformity across the sensor.

- FFC: Triggered on an as-needed basis, the FFC adjusts
for discrepancies between actual responses and our model’s
predictions. It captures pixel responses from a shuttered flat
reference source and then adjusts the TPC offsets to normalize
response levels, temporarily pausing the video output.

- DPC: The DPC replaces defective pixels by averaging
the intensities of surrounding pixels, using both pre-measured
maps and run-time threshold-based detection.
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Fig. 1: The proposed image processing architecture for thermal imaging based on long-wave infrared.

Leveraging heterogeneous SoC allows these pixel-wise al-
gorithms to be executed efficiently in real-time, eliminating
ghosting artifacts and blurring associated with scene-based
NUC approaches [11], [41]. The synergy between the TDC
and TPC also decreases the prevalence of FFC activations,
enhancing the system’s operational continuity and stability
without compromising image quality.

2) Image Enhancement: The image enhancement stack im-
proves overall image quality by sequentially executing the EE,
contrast enhancement, noise filtering, color mapping, and RGB
to YUV conversion (see Fig. 1). The most distinctive feature is
the two-layer contrast enhancement techniques: thresholding
plateau histogram equalization (TPHE) and CLAHE. This
feature aims to enhance the image quality while maintaining
throughput for real-time operation.

- TPHE: The first layer of contrast enhancement, TPHE,
normalizes the 14-bit depth images from the IRFPA to fit
an 8-bit depth suitable for standard visual displays. This
involves dynamic range compression, crucial for reconciling
the inherent disparity between the temperature and visible
light domain, caused by the wider temperature sensitivity
compared to the general environment’s narrower dynamic
range (See the raw video in Fig. 1). The TPHE differs from
traditional plateau histogram equalization by incorporating a
thresholding-based detection mechanism to identify optimal
start and end points for histogram adjustment. This strategy
minimizes noise and enhances global contrast, making the
sparse histogram distributions denser and more suitable for
presentation in the visible color space (See Fig. 1).

- CLAHE: Following the TPHE, the CLAHE further refines
the image contrast by selectively amplifying local details.
This layer is tailored to improve visual accuracy and detail
without overburdening the system’s computing resources. Due
to the extensive memory requirements typically associated
with the CLAHE—proportional to tile size and exponential
to bit depth—the integration can lead to increased cache miss
rates and latency. Our architecture addresses this by preceding
the CLAHE with the TPHE, reducing the data range and
simplifying the histogram complexity, thereby significantly
improving processing times and reducing memory overhead.

- Noise Filtering: Enhanced contrast can inadvertently
increase both temporal and spatial noise—the former due
to brightness variations between frames and the latter from
heightened detail amplification. Our approach includes two
filters designed to mitigate these effects, ensuring that en-
hancements do not compromise the clarity of the image.

- Color Mapping & Space Conversion: The final steps in
our image processing sequence involve adapting the enhanced
images for display. This involves color mapping adjustments,
converting the image format from RGB to YUV, and optimiz-
ing the images for various output devices and applications.

B. HW/SW Architecture

1) SoC HW Architecture: To effectively implement our im-
age processing architecture, we have integrated the architecture
into the TI TDA3x SoC, which features the two Cortex-M4
cores, the two C66x DSP cores, and the EVE [37].

- C66x DSP: The C66x DSP is an 8-way VLIW core with a
dual data-path supporting up to 128-bit wide SIMD operations.
This allows an efficient trade-off between programming work-
load and data-level parallelism. We distributed the intensive
image processing algorithms to those DSPs.

- Cortex-M4: The two Cortex-M4 cores handle less in-
tensive operations such as serial communication, hardware
IP control, status checks, and task management. The first
core, the system’s master, manages the video stream and
oversees task distribution across the cores. The second core is
tasked with environmental monitoring, such as detecting light
conditions and contrast indices, using data extracted during
image processing on the DSP cores. This information aids in
the real-time configuration of image enhancement algorithms,
providing adaptability to diverse environmental conditions.

- EVE: The EVE supports histogram acceleration using the
VCOP instructions, making the EVE especially suitable for
executing histogram-based contrast enhancement algorithms.
However, the EVE has drawbacks in the complexity of run-
time configuration due to the localized, isolated data-path with
scratchpad memories and DMAs for operation (see Fig. 2),
requiring stalls for synchronization between the DMA, VCOP,
and ARP32. Distinctive SW design flow is another concern.
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To leverage each processing unit’s strengths, we have al-
located the advanced contrast enhancement algorithms across
the EVE and DSP, with configurable options available at boot
time. The EVE has advantages in latency and power due to
the more vectorized (up to 16-way SIMD) and isolated low-
latency scratchpad memories with 256-bit access, while the
DSP offers fast real-time configuration for more adaptability.

This dual approach harnesses the distinct capabilities of
each core type within the SoC, optimizing performance and
efficiency while maintaining the flexibility needed to handle
diverse imaging scenarios effectively.

2) System SW Architecture: In our architecture, we adopted
a real-time operating system (RTOS) with asymmetric multi-
processing (AMP) to optimize task execution across hetero-
geneous processing units. Each core manages its own task
priorities, which allows for precise workload distribution and
minimizes synchronization overheads.

- Task Scheduling: To handle the sequential nature of our
image processing tasks effectively, we utilize fixed-priority
preemptive scheduling. This approach ensures that tasks pro-
cessing earlier video frames always have higher priority than
those processing subsequent frames, thus maintaining a consis-
tent processing order and preventing frame processing delays.

Fig. 3 illustrates the task allocation of the proposed system.
- Cortex-M4 Roles: The Cortex-M4 cores manage less

computationally intensive but crucial operations. The master
loop on the first core oversees communication with external
devices and user settings. The second core’s configuration loop
detects environmental conditions and adjusts the settings of the
image processing algorithms on the DSP cores. These cores
also manage other tasks such as frame capturing, temporal and
spatial noise filtering, and display control.

- DSP and EVE Workload Distribution: To distribute
workloads efficiently among the DSPs, tasks are assigned not
only based on their sequential order but also considering their
computational intensity. DSP 0 handles the TDC, TPHE, color
mapping, and RGB-to-YUV tasks, while DSP 1 handles the
TPC, DPC, edge enhancement (EE), CLAHE, and prepro-
cessing tasks necessary for the EVE. We grouped several se-
quentially executed algorithms (e.g., TPC+DPC+EE and Color
Mapping + RGB-to-YUV) to minimize task creation and data
transfer overheads. The CLAHE algorithm is optionally run on
the EVE or DSP 1, depending on the system setup selected at
boot, allowing flexibility in resource and performance needs.
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Fig. 3: The task allocation of the proposed system.

These workload distribution approaches aim to leverage the
distinct capabilities of each component within the SoC, opti-
mizing performance and efficiency. This ensures our system
can adapt to varying operational demands in real-time while
maintaining high-quality output.

IV. SOFTWARE OPTIMIZATION

A. SIMD Kernel for NUC

In our software, compute kernels for image processing
algorithms utilize the fixed-point format (q format) to imple-
ment real number arithmetic efficiently. Despite the broader
dynamic range of floating-point, the q format is favored for its
better precision within the small dynamic range [42], typical of
image data. Moreover, operations vital for kernel design, such
as the dot product and bit-field extraction, are unsupported for
the floating-point, necessitating format conversions at the be-
ginning and the end, increasing compute power requirements.

The fact that initial sensor data are integers also makes
fixed-point a natural fit for minimizing conversion overheads.
Thus, fixed-point arithmetic helps maintain numeric accuracy,
critical for image quality, throughput, and energy efficiency.

- SIMD Optimization: The pixel data, initially 14-bit
unsigned integers stored in 16 bits, are processed as SIMD.
This format remains unchanged until contrast enhancement
is processed, implying the data bits representing numbers
exceeding 16 bits are truncated at the end of each algorithm.
The SIMD kernels in Fig. 4 are tailored for diverse fixed-point
configurations, accommodating various algorithms efficiently.
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- Kernel Designs: The first kernel (Fig. 4(a)) executes
the qsmpy32r1 instruction for 32-bit multiplications within
a Q0.31 fixed-point format, performing 4-way 32-bit signed
multiplication and shifting right by 31 with rounding to
maintain result accuracy. This kernel is adaptable to fixed-
point configurations satisfying a + b = 31, c + d = 31, and
b + d = 31, with post-multiplication steps extracting 16-bit
least significant bits (LSBs) using dpackl2 and dpack2.

The second kernel (Fig. 4(b)) employs the dsmpy2 16-bit
multiplications, handling overflow by extending results and
shifting left by one. This suits any configurations meeting e+
f = 15, g+h = 15, and f+h = 15, with dpackh2 and dpack2
extracting and ordering 16-bit most significant bits (MSBs).

The rationale behind employing two distinct kernels is to
balance accuracy and throughput. The TDC and TPC, the most
computationally demanding operations in the NUC algorithm
stack, rely on polynomial expressions—quadratic for TDC and
linear for TPC—expressed as the following equations.

ITDC(i, j) = IRaw(i, j)−
2∑

n=0

Cn(i, j) · (TFPA − TRef )
2−n

(1)

ITPC(i, j) = G(i, j) · ITDC(i, j) +O(i, j) (2)

The ITDC , IRaw, and Cn(i, j) refer to the TDC output, raw
input, and coefficients, respectively, and ITPC , G(i, j) and
O(i, j) refer to the TPC output, gain, and offset, respectively.
The coefficients for the squared term at the TDC are subtle,
whereas the variables are large. Sole reliance on 16-bit formats
leads to critically adverse effects on precision due to the trun-
cation of results. Conversely, small computational adjustments
can significantly impact energy use and throughput in pixel-
wise operations due to high iteration counts, memory footprint-
induced cache misses, and VLIW-related register congestion.
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B. CLAHE Optimization

Fig. 5 depicts the entire process of the CLAHE algorithm.
The operation of the CLAHE consists of two sequences:
replace map generation and applying them with interpolation.

The replace map generation consists of four sub-sequences,
executed tile by tile. First, the histogram is created by scanning
the tile pixels. Next, each histogram bin is thresholded through
clip limit configuration, and each excess value trimmed from
thresholding is accumulated. This accumulated value is dis-
tributed to other histogram bins. Last, the cumulative dis-
tribution function (CDF) is calculated. The generated CDF
is normalized to the output bit-depth and used to create the
replace map, which is interpolated at the latter sequence.

The basis for separating the replace map generation se-
quence into sub-sequences is whether the operations can be
merged. This separation minimizes the loop overheads. Most
of the required arithmetic computations in each loop are
vectorized through SIMD instructions. However, thresholding
in the second and third sub-sequences requires conditional
branching for each pixel in the original pseudo-code to deter-
mine whether it exceeds the clip limit. The branch instruction,
twice needed for each branch, places five delay slots without
branch prediction in C66x ISA. Our kernels are inappropriate
for filling these slots due to the intrinsic dependencies. Be-
sides, most arithmetic computations and memory accesses are
required for each data in the kernel, blocking vectorization.

1) Thresholding Kernel: We designed the optimized kernel
shown in Fig. 6 to achieve two objectives: To avoid the branch
overheads and to provide the 4-way SIMD vectorization.

The kernel first finds the minimum value between the clip
limit and the histogram bins and generates the thresholded
bins using the minimum value. Then, the current excess value
is calculated by subtracting thresholded bins from the original
bins and accumulating them into the excess vector. Finally, the
thresholded bins are stored in the histogram bins. The excess
vector is summed after the loop is completed. This kernel
efficiently replaces the previous branching-based algorithms,
as the kernel includes only three arithmetic instructions that
require one cycle for each operation.
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in the second sub-sequence of the CLAHE.

#### Round One:   Fast Distribution
while (excessTotal > 0xFF) {
  dist16v4 = duplicate_by_four(excessTotal >> 8)
  pass16v4 = {0,0,0,0}
  for (i=0; i < 0x100; i+=4) {
    temp16v4 = min(hist[i+3:i] + dist16v4, clipLimit16v4)
    pass16v4 = pass16v4 + temp16v4 - hist[i+3:i]
    hist[i+3:i] = temp16v4
  }
  excessTotal = excessTotal - sum(pass16v4)
}
#### Round Two:   Distribute by Up to Four
for (j=0; excessTotal > 4; j+=4) {    // j is unsigned 8-bit
  temp16v4 = min(hist[j+3:j] + {1,1,1,1}, clipLimit16v4)
  excessTotal = excessTotal - sum(temp16v4 - hist[j+3:j])
  hist[j+3:j] = temp16v4
}
#### Round Three: Distribute Each by One
for (; excessTotal > 0; j+=1) {
  temp = min(hist[j] + 1, clipLimit)
  excessTotal = excessTotal - temp + hist[j]
}

Fig. 7: The pseudo code for excess distribution sub-sequence
of the CLAHE (output bit-depth is 8-bit).

In the third sub-sequence, this kernel is also utilized with
slight modifications. Fig. 7 presents our excess distribution
method, marking differences in green. The kernel differs
in adding distribution values before finding the minimum,
distributing the excess values with thresholding to the clip
limit while accumulating the distributed values in the vector
container. This vector is summed and subtracted from the total
excess value, marking what excess value is left.

The excess distribution has three rounds of execution. The
first round is the fast distribution round, passing the excess
value of the total value divided by the bin count for each bin.
This round subtracts the distributed values when every iteration
for the bins is completed, reducing the iterative computations
for throughput. Over-distribution does not occur as integer
division always results in a number smaller than or equal to
the real division. This round ends when the total excess values
are less than the bin count. The second round executes the
summation of accumulated values and subtraction from the
total excess value for each iteration, adding the sensitivity to
prevent over-distribution. The third round, marked as red, does
not utilize SIMD, providing the most sensitive operation to
prevent over-distribution. This three-round architecture ensures
accurate computation while maximizing the throughput.
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Fig. 8: The kernels for interpolation in the CLAHE. (a) Ver-
tical/horizontal linear interpolation. (b) Bilinear interpolation.

2) Interpolation Kernel: The interpolation is categorized
into four types (see Fig. 5). The four edge parts of the image,
halved in width and height relative to the tiles, use the replace
map directly without requiring interpolation. The tiles on the
vertical and horizontal borders undergo linear interpolation
between the adjacent allocated replace maps, which are left
and right or top and down, respectively. The central part of
the image, away from borders, utilizes bilinear interpolation
among the four nearest replace maps for smooth gradient.

Our system calculates the coefficients for interpolation and
stores them in unsigned Q0.16 format at system boot time to
replace the binary division. The interpolation sequence loads
those coefficients and calculates the mapping intensity inter-
polated between the current replace maps. These operations
are also vectorized using the SIMD kernels in Fig. 8.

The linear interpolation includes one 4-way unsigned 16-
bit multiplication (dmpyu2) and two 2-way 32-bit additions
(dadd2), generating four outputs at one iteration. For bilinear
interpolation, the double 16×4 dot product (ddotpsu4h) is
utilized, generating two outputs at one kernel iteration. Both
kernels use macro operation for the 4-way extraction of 16-bit
MSBs (dpackh2-dpack2), also used in the NUC kernels.

3) Cache Optimization: We applied cache optimization
strategies to improve the performance, shown in Fig. 9.
The first optimization is static cache memory partitioning,
supported by the C66x core, allowing some shares of the L2
cache to operate as scratchpad memory. By allocating to the
L2, the L2 cache miss, which adversely affects the latency due
to the characteristics of the dynamic random access memory
(DRAM), is eliminated. We allocated each tile’s interpolation
coefficients and histogram to the L2 cache. The memory
required for partitioning is calculated using the following code:
1 tileHeight = height / tileCntV;
2 tileWidth = width / tileCntH;
3 tileSize = tileHeight * tileWidth;
4 tileCnt = tileCntV * tileCntH;
5 // Memory sizes for allocation
6 sizeVertLerp = sizeof(uint16) * 2 * tileHeight;
7 sizeHoriLerp = sizeof(uint16) * 2 * tileWidth;
8 sizeBiLerp = sizeof(uint16) * 4 * tileSize;
9 sizeHistogram = sizeof(uint32) * 256 * tileCnt;
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Fig. 9: The cache optimization methods for the CLAHE.

The second optimization is regional iteration, which orders
the computation in the interpolation sub-sequence to increase
the L1 cache hit rate. Fig. 9 presents the harmonization of
the static cache memory partitioning and iteration architecture
for the interpolation sub-sequence. We first ordered the com-
putation of each tile by interpolation categories (see Fig. 5),
such as non-interpolation, vertical linear interpolation—Lerp
(V), horizontal linear interpolation—Lerp (H), and bilinear
interpolation—BiLerp. This establishes distinct memory seg-
ments between each category, reducing the address variations
in continuing memory access iterations. Next, we separated the
iteration of bilinear interpolation to match the sub-region of
interpolation coefficients, which fit into the L1 data cache, a
32 KB 2-way set associative cache. This causes the kernel
to access the regional coefficients repeatedly, minimizing
memory address variation and increasing the cache hit rate.

C. VLIW Optimization

The C66x DSP core is an 8-way VLIW machine containing
six arithmetic-logical units (ALUs) named .L, .S, and .D and
two multiplier units named .M, which can operate in parallel.
Each unit has its own executable instructions, but the basic
arithmetic SIMD instructions are executable for most units
except for the .D. The .D is mainly used for memory access.

The two data paths contain these units individually, or-
ganizing eight units and enabling up to 8-way instruction
execution in ideal cases. In this architecture, the kernel should
simultaneously instruct the eight functional units to maximize
the parallelism for enhanced throughput. However, in most
cases, the kernel design is not ideal for distributing the
computation among the units. Even though modern compilers
support optimizations for VLIW architecture, this automatic
optimization is often insufficient for thorough distribution.

To maximize parallelism, we manually unrolled each loop
that executes the designed compute kernels, maximizing
general-purpose register utilization. Fig. 10 presents the con-
cept of loop unrolling for VLIW optimization. Manual un-
rolling dramatically reduces the iteration count while main-
taining the similar VLIW-packed instruction count. This also
lowers loop overheads proportional to the iteration count, such
as memory array indexing and conditioned branching.

		for	(i=0;	i	<	0x100;	i+=4)	{
				temp								=	min(hist[i+3:i],	clipLimit)
				excess						=	excess	+	temp	-	hist[i+3:i]
				hist[i+3:i]	=	temp16v4
		}

		for	(i=0;	i	<	0x100;	i+=16)	{
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		}
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Fig. 10: VLIW optimization based on manual loop unrolling.
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Fig. 11: Comparison of the images from the configurations
turning on/off the TPC.

V. EVALUATION

This section presents an evaluation of the proposed system,
focusing on four key perspectives listed below:

• Visual analysis of the image processing architecture.
• Design space exploration (DSE) of SW optimizations.
• Comparative analysis between the SOTA works.
• Core load analyses to process higher-resolution videos.

We utilized the TDA3MVS SoC coupled with 512 MB
LPDDR2 memory for system implementation. The video
specification was set to 640×480 at 30 or 60 FPS.

A. Visual Analysis

1) NUC: We evaluated the NUC stack by comparing
frames captured with and without the target algorithm, with all
other algorithms active except for the EE and noise filtering
(see Fig. 11). Contrast enhancements are toggled to improve
visualization. The result shows applying the NUC removed the
non-uniformities, with no ghosting or blurring observed.
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Fig. 12: Comparison of the images over time from the config-
urations turning on/off the TDC, from immediately after the
FFC execution to ten minutes after.
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Fig. 13: Comparison of the images from the configurations
turning on/off the CLAHE. Other algorithms are enabled.

We assessed the effectiveness of the TDC by comparing
frames from the same scene immediately after executing the
run-time FFC and ten minutes later (see Fig. 12). Without
TDC, images degrade quickly. With TDC, the images re-
mained clear even ten minutes after FFC, demonstrating that
TDC noticeably reduces the frequency of FFC interventions,
minimizing disruptions during continuous real-time imaging.

2) Contrast Enhancement: Our system’s two-layer contrast
enhancement algorithm improves on previous single-layer
approaches, as shown in Fig. 13. The two-layer algorithm
enhances both contrast and locality, making it superior not
only to normal scenes (Scene 0) but also to scenes with objects
at temperatures that greatly differ from their surroundings
(Scene 1). In contrast, the TPHE-only algorithm provides
sufficient contrast to detect a human but fails to highlight other
elements in the scene. This drawback is more noticeable in
the high-temperature contrast scene (Scene 1), denoting the
effectiveness of CLAHE in thermal imaging.

B. Design Space Exploration

1) SIMD Kernel: We evaluated the impact of the SIMD
kernel on latency within the NUC stack and TPHE, omitting
DSP CLAHE, which could not achieve 30 FPS without
SIMD. Our kernel reduced TDC and TPC latencies by 40.72%
and 74.87%, respectively, thereby decreasing total latency
by 46.40% at 30 FPS and 54.48% at 60 FPS, resulting in
performance improvements of 1.87× and 2.2×. At 60 FPS,
without SIMD, frequent frame receipt exacerbated pipeline
interruptions, delaying frame processing until the previous
was complete, thus increasing latency. However, the SIMD
kernel mitigated these stalls, further decreasing latency. The
cumulative CPU load of two DSPs reduced from 58.5% to
28.5% at 30 FPS and from 119.70% to 58.40% at 60 FPS,
showing reductions of 51.28% and 51.21%, respectively.
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Fig. 14: The latency breakdown on SIMD kernel.

#### Find Sub-Region Height Type Count
div = tileHeight / splitCnt
subRgnTypeCnt = 1
while ((tileHeight*subRgnTypeCnt) % splitCnt > 0)
  subRgnTypeCnt++
#### Find Sub-Region Heights
subRgnHeightList = ones(subRgnTypeCnt) * div
rem = ((tileHeight*subRgnTypeCnt) / splitCnt) % subRgnTypeCnt
idx = 0
while (rem-- > 0)
  subRgnHeightList[idx++]++

Fig. 15: The algorithm for splitting sub-region.

2) CLAHE Optimization: Using various sub-region set-
tings, we analyzed the impact on system latency when ap-
plying regional iteration to bilinear interpolation. The latency
results were measured when processing 30 FPS videos while
other SW optimizations were fully enabled. The algorithm in
Fig. 15 was used for cases where the tile height possesses
remainder in integer division. This algorithm diversifies height
types to flawlessly process the center parts. For example, if the
tile height is 120 and the sub-region count is 32, the heights
are (4, 4, 4, 3), processing 15 lines per 4 iterations.

Each tile size setting exhibits a unique loop architecture, as
they differ in organizing arithmetic operations and memory
footprints. Two key factors affecting latency are cache hit
rate and the extent of bilinear interpolation. A smaller tile
size improves the L1 cache hit rate, thereby reducing latency.
However, the edge parts that require low computational load,
i.e., no interpolation (see Fig. 5), decrease proportionally to the
tile size. The pixels excluded from the edge parts are replaced
not only with linear but also with bilinear interpolations, which
are among the most computationally intensive operations in
CLAHE. Due to these characteristics, modeling the regional
iteration’s latency for each setting with only simple, config-
urable parameters is challenging. This necessitates empirical
experiments to determine the latency-optimal sub-region count
settings. The results of these are shown in Fig. 16.

Our experiments demonstrated a general decrease in latency
as the sub-region count increased, with the most significant
reduction observed in the initial incremental step. However,
for tile sizes 128×96 and 128×80, increased loop overheads
and saturated cache hit rates limit further improvements. The
regional iteration achieved an average latency reduction of
16.62% and a maximum reduction of 21.86% in the 80×160
setting, reducing latency by 1920 µs. The lowest observed
latency was 5678 µs at a 128×120 tile size with 120 sub-
regions setting, underscoring the effectiveness of regional iter-
ation. This could be further improved by cutting the currently
indivisible units of the sub-region, the line, into smaller pieces.
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Fig. 16: The latency breakdowns regarding varying sub-region
count and tile size configurations.
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Fig. 17: The average latency impact breakdowns on static
cache memory partitioning.

Static cache memory partitioning risks lowering the L2
cache hit rate due to the reduced space available for normal
cache operations. This reduction may adversely affect the
throughput of the image processing algorithms. To clarify
this uncertainty, we conducted the experiment assessing the
impact of the partitioning on image processing, particularly
the CLAHE and the TPC+DPC+EE tasks on DSP 1 (see Fig.
3). In this experiment, we applied the latency-optimal sub-
region count for each tile size configuration, as found in the
previous experiment (see Fig .16).

The results in Fig. 17 indicate that the partitioning reduced
total latency by 131 µs and 299 µs on average at 30 FPS and
60 FPS, respectively, achieving modest reductions of 0.53%
and 1%. Notably, at 60 FPS with a 128×120 tile size, latency
decreased by 1265 µs (4.27%), with several configurations
achieving over 1 ms reduction while others showed adverse
effects. The results vary due to the distinct loop architectures
of each setting, which have different workloads and mem-
ory footprints, suggesting potential for targeted throughput
improvements for specific settings. Further investigation into
static cache memory partitioning, such as application to other
algorithms, will continue to refine these findings.
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Fig. 18: The latency impact breakdowns of the VLIW opti-
mization on the entire system latency for each tile size setting.

3) VLIW Optimization: We assessed the impact of VLIW
optimization on reducing latency by measuring the changes
when manual unlooping was enabled and disabled, as il-
lustrated in Fig. 18. Similar to the previous evaluation, the
latency-optimal sub-region count settings are applied.

The results present an average latency reduction of 986.91
µs at 30 FPS and 2747.33 µs at 60 FPS, corresponding
to 3.72% and 7.18% speedups, respectively. While these
results demonstrate consistent performance improvements, the
observed speedups were smaller than anticipated. We first
expected the speedups to be similar to the SIMD kernels,
as the generated assembly codes exhibited notably improved
parallelism. However, the actual result shows an even lower
impact than the regional iteration, evidenced by the results in
Fig. 14 and 16. This result originates from the limited number
of data paths, which is only two, causing stalls for memory
access. Therefore, according to the comprehensive results, the
prior aspects for enhancing throughput appear to be data-level
parallelism and cache misses, not instruction-level parallelism.

Nevertheless, specific configurations, such as the 128×96,
benefited significantly from this optimization, showing a
16.43% reduction in latency. This improvement is attributable
to the characteristics of the image processing pipeline pre-
viously identified during the SIMD kernel evaluation. In the
future, considering our RTOS architecture, we aim to analyze
the correlation between the pipeline and each task’s workload.

C. Comparative Analysis

Table I compares our system and the SOTA works, high-
lighting differences in the system, algorithm stacks, and power
consumption metrics. The SOTA works consist of FPGA-
based systems, mentioned in Section II-A1 including our pre-
vious work [24], and a compact system using a microcontroller
unit (MCU) and a camera module [43]. We set the evaluation
metric to compare power efficiency as FPS per watt (FPS /
W ). Our system’s power was calculated by measuring energy
usage for 30 minutes using a MakerHawk UM34C multimeter.
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Works Syst. Compon. Resolut. FPS NUC Stack Contrast Enhanc. Power (W ) Power Effic. (FPS / W )

This work SoC + IRFPA 640×480
30 TPC+TDC+FFC+DPC HE-variant+CLAHE 1.837a / 1.865b 16.33a / 16.09b

HE-variant 1.656 18.12

60 TPC+TDC+FFC+DPC HE-variant+CLAHE 2.145a / 2.160b 27.97a / 27.78b
HE-variant 1.908 31.45

[23] FPGA + IRFPA 640×480 30 / 111 TPC+FFC+DPC HE 1.812∗ / 6.970∗ 16.56∗ / 15.96∗

[24] FPGA + IRFPA 640×480 60 / 142 TPC+TDC+FFC+DPC Min-max stretching 2.098∗(60 FPS) 28.60∗(60 FPS)

[43] MCU + Camera 160×120 8.7 Camera dependent HE-variant 0.920 9.46
aEVE CLAHE mode / bDSP CLAHE mode. ∗FPGA on-chip power, other system devices are not measured.

TABLE I: Comparative analysis between this work and SOTA systems.

Core 30 FPS (%) 60 FPS (%)
HEa DCb ECc HEa DCb ECc

Coretx-M4 0 6.90 14.20 12.30 9.80 21.20 21.00
Coretx-M4 1 1.10 5.60 1.20 1.20 11.80 1.60
DSP 0 23.80 26.40 26.30 46.70 50.50 57.50
DSP 1 8.60 26.20 12.80 17.70 55.70 30.80
EVE 0.70 0.70 6.30 0.70 0.90 12.00
aHE-only mode / bDSP CLAHE mode / cEVE CLAHE mode.

TABLE II: Peak core loads across the processing units.

According to Table I, our system presents enhancements in
energy efficiency, especially regarding the composition of the
image processing pipeline. When employing the HE-variant
for contrast, our approach improves power efficiency by 9.42%
and 9.96% at 30 and 60 FPS, respectively, compared to the
FPGA-based systems. When the CLAHE is added, slight
degradations of -2.84% and -2.87% are measured. This result
underscores our system’s power efficiency, as the HE requires
more computational load than min-max stretching, and the
CLAHE requires even more load than the HE-variants.

Even though our power measurements reflect the entire
system’s consumption, including the additional IRFPA power
of up to 300 mW , our system shows better efficiency than the
previous works, which provided only the FPGA chip’s power
usage. This achievement is attributed to the utilization of
lightweight heterogeneous SoC and SW optimization, making
our system a strong competitor in thermal imaging systems.

Notably, unlike the FPGA-based system [23], the power
consumption does not increase proportionally to the FPS,
causing the efficiency to be improved at the higher frame rates.
This is because the SoC’s operating frequency does not differ
depending on whether the output FPS changes. This offers
further room for power optimization using frequency scaling.

D. Potential for Higher Resolution Video Processing

The load distribution across the different processing units
and use cases in our system, presented in Table II, provides
insights into its capability to handle higher-resolution videos.

The core utilization at 60 FPS indicates that the DSP 0
is nearing capacity, especially in the DSP CLAHE and EVE
CLAHE modes, where the utilization exceeds 50%. Other
cores, such as the EVE, show lower utilization, suggesting
some tasks could be redistributed or optimized further.

Considering the current resolution of 640×480, scaling up
to a higher resolution of 1280×1024 will increase the compu-
tational load proportionally, approximately 4.27×. However,
the relatively low utilization of some cores, such as EVE
(particularly in the HE and the DSP CLAHE modes), hints
at the available headroom that could be exploited.

Processing higher resolutions will significantly depend on
optimizing current algorithms and effectively redistributing
tasks to underutilized cores. We anticipate further throughput
gains will be explored by adjusting the workload balance be-
tween DSPs and utilizing the EVE more intensively, especially
given the EVE’s lower utilization rates.

Future work will explore these optimizations to assess the
feasibility of supporting higher-resolution video processing
within the current HW/SW architecture while minimizing
the compromise of the system’s performance and energy
efficiency. This will involve detailed modeling and profiling of
HW/SW architectures and empirical studies, providing better
resource utilization through optimizing workload distribution
and algorithm configurations.

VI. CONCLUSION

This paper presents a compact yet high-performance sys-
tem for real-time thermal imaging. By harmonizing the op-
timized image processing architecture with the lightweight
heterogeneous SoC, we have realized low-cost, high-quality
thermal imaging, which includes advanced features such as
the CLAHE. Our system processes high-quality thermal video
at 640×480 resolution with 14-bit depth, a maximum load
of 57.50%, and power consumption below 2.2 W . Addition-
ally, when executing similar image processing, our system
presents 9.42% and 9.96% power efficiency improvements at
30 and 60 FPS, respectively, compared to the FPGA-based
systems. This indicates the lightweight heterogeneous SoC
efficiently eliminates the need for the FPGAs to execute inten-
sive imaging processing algorithms. These optimistic results
offer the possibility of processing higher-resolution thermal
videos, such as 1280×1024, from the SOTA IRFPAs. The SW
optimization techniques enhance the utilization of the DSPs
for real-time image processing, making it feasible to handle
sophisticated algorithms typically dependent on the FPGAs.
We expect our system architecture to be utilized widely for
the diverse applications requiring efficient thermal imaging.
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