
 

 

 
Fig. 1. Process of cascade classifier 
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Abstract—Face recognition applications are being widely 

studied owing to their extensive usability in the field of 

computer vision. However, processing an entire image requires 

a considerable amount of time. To reduce the processing time, 

several algorithms that extract only the face from the image 

during pre-processing are studied. Haar classifiers are 

extensively used for the hardware implementation of face 

detection algorithms that improve the processing speed of face 

classification. This paper proposes a Haar classifier based face 

detection architecture that removes unnecessary iterations 

during classification to further improve the processing speed. 

The proposed architecture improves the processing speed by 

4.46% compared to that of conventional Haar classifier based 

face detection architectures, for face detection using a VGA 

image with 30 faces. The proposed architecture tends to 

improve the processing speed as the number of faces in the 

image increases while matching the detection accuracy of 

conventional methods. Additionally, this architecture can be 

widely applied to classification algorithms that are based on 

iterations. 
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I. INTRODUCTION 

Computer vision and deep learning are becoming 
increasingly significant with the rapid development of 
computing technology. Accordingly, image processing of 
human faces is being studied for identification purposes and 
applications pertaining to augmented reality and internet of 
things [1–3]. However, performing image processing on an 
entire input image has the drawbacks of difficulties in real-
time operation and implementation using small devices; this 
is because image processing consumes a considerable 
amount of time and power owing to the large amount of 
computation involved. To overcome these drawbacks, the 
process of cropping only the facial area from the entire 
image is necessary prior to implementation. Several studies 
use face detection algorithms to classify only the facial area 
within an entire image, which is subsequently used as an 
input for image processing to improve the efficiency of the 
entire image processing system [4–7]. Face detection 
algorithms are classified into feature-based [4], appearance-

based [5], knowledge-based [6], and template-matching [7] 
methods. Among these algorithm-based methods, the 
feature-based method can detect the facial area in real-time 
because it utilizes low-level features, such as color and 
shape. The Haar classifier algorithm in the Viola–Jones 
Object Detection Framework is a feature-based method that 
detects human faces using the features trained by the 
AdaBoost machine learning technique [8]. The Viola–Jones 
algorithm has the advantage of being able to detect not only 
the frontal face, but also the side of the face or the 
accessories worn, depending on the learning data; further, 
this algorithm entails a low computational cost and ensures a 
high face detection rate. Moreover, because the classification 
of the Viola–Jones face detection algorithm is relatively 
simpler than the other algorithms, several studies are 
attempting to further reduce the power consumption and 
improve the processing speed by implementing the algorithm 
on hardware [9]. In one of the studies that implemented the 
Viola–Jones face detection algorithm on hardware, sub-
window and an image-resizing method were used to detect 
multiple faces in one image; further, an architecture that 
considerably improves the face detection processing speed 
through the pipelining of classifiers was proposed [9]. The 
face detection hardware architecture in [9] exhibits a 
processing speed approximately 35 times faster than that of 
the software-based Viola–Jones algorithm. Despite several 
performance improvements, the processing speed is still 
limited because the detection operation needs to be 
performed repeatedly for all the sub-windows in the image. 
Therefore, we propose a face detection hardware architecture 
using a novel skip scheme that reduces the total number of 
iterations and promotes a faster processing speed. The 
classification of the sub-windows adjacent to the sub-
window wherein the face is detected is skipped, and 
therefore, the total number of iterations is reduced. 
Consequently, the processing speed of the proposed 
architecture is improved. 

II. SKIP SCHEME 

Fig. 1 shows the process of a cascade classifier using 
Haar-like features that are learned via AdaBoost. Each stage 
of the process entails several Haar-like features. A sub-
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Fig. 2. Calculation of intersection over union (IoU) 

 
Fig. 3. Proposed face detection architecture 

window is inputted into the cascade classifier and is 
classified in each stage. Even if the classification in one stage 
is unsuccessful, the sub-window is determined not to be a 
face and the classification process is terminated immediately. 
The same face can be detected repeatedly in the region that is 
adjacent to a facial sub-window because the classification of 
the sub-windows progresses pixel by pixel. Intersection over 
union (IoU) is commonly used to merge the detection results 
of the same face. The degree of proximity is determined by 
calculating the IoU between the sub-windows, as shown in 
Fig. 2. When the calculated IoU is greater than the threshold 
value, the sub-windows are judged to be the same face and 
merged. Since the results of the same face are merged, the 
computation for the adjacent sub-windows can be skipped. 
Therefore, the skip scheme does not accommodate redundant 
computations of the sub-windows that are adjacent to a facial 
sub-window. The proposed method improves the processing 
speed because the number of unnecessary computations 
performed by the cascade classifier is reduced. 

III. HARDWARE ARCHITECTURE 

Fig. 3 shows the proposed face detection architecture. 
The Frame Grabber receives the pixel data from the camera 
and stores the image of one frame in the Frame Buffer. The 
image is retained until the face detection is realized. Then, a 
new image is received and the Frame Buffer is updated 
accordingly. The Scaler resizes the image stored in the 
Frame Buffer and creates an image pyramid to detect faces 
of various sizes within the image. The Cascade Classifier 
that consists of the Integral Image Generator and Classifier, 
performs face classification using the Haar classifier. The 

Integral Image Generator generates an integral image for 
each sub-window for the resized image. Thereafter, the 
Classifier performs face classification using the integral 
image. The Face Merger receives classification results and 
coordinates for each sub-window from the Cascade 
Classifier and merges the sub-windows to detect the 
particular face. The conventional classifier must repeatedly 
perform classification for all the sub-windows in the image. 
In other words, because the number of iterations of the 
classifier is large, the conventional classifier takes a long 
time to classify the entire image. Reducing the number of 
iterations is directly linked to improving the processing 
speed of the entire face detection. Therefore, the proposed 
architecture reduces the number of iterations by skipping the 
classifications of the sub-windows that are adjacent to the 
sub-window wherein the face is detected. Since the 
information of the adjacent sub-windows are classified as the 
same face, the sub-windows are eventually merged by the 
Face Merger. The proposed architecture can improve the 
processing speed while maintaining the face detection rate 
without unnecessary iterations. 

A. Scaler 

The Scaler in the proposed architecture generates the 
address of the stored image in the Frame Buffer to perform 
image resizing. The Scaler resizes the image by applying the 
nearest-neighbor interpolation method with a scale factor of 
1.2. The scale factor is updated by multiplying 1.2 as the 
downsizing step changes. The multiplication for scale factor 
is implemented using a number of logic-level shifters and 
adders. The row and column coordinates of the resized image 
are produced by continuously accumulating the scale factor. 
Subsequently, the Scaler generates an address for accessing 
the Frame Buffer. The address uses only the integer value of 
the coordinates. By using this address as the read address of 
the Frame Buffer, the image can be downsized without 
extensive computations. The Scaler produces a downscale 
image pyramid through a total of 18 resizing steps to 
facilitate the detection of faces of various sizes within the 
image. 

B. Integral Image Generator 

The Integral Image Generator receives the resized image 
pixel from the Scaler and stores it in the Line Buffers to 
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TABLE I. NUMBER OF FEATURES FOR EACH STAGE 

Stage 
Number of 

features 
Stage 

Number of 

features 
Stage 

Number of 

features 

0 3 8 56 16 140 

1 16 9 71 17 160 

2 21 10 80 18 177 

3 39 11 103 19 182 

4 33 12 111 20 211 

5 44 13 102 21 213 

6 50 14 135 
Total 2135 

7 51 15 137 

 

TABLE II. HARDWARE UTILIZATION FOR FACE DETECTION SYSTEM 

 
Architecture 

of [9] 

Proposed 

architecture 

(without skip 

scheme) 

Proposed 

architecture 

(with skip 

scheme) 

Slice Registers 21,902 12,931 12,944 

Slice LUTs 84,232 67,590 67,934 

BRAMs 97 176 176 

DSP 48E 7 125 125 

 

generate the integral image. Each Line Buffer stores one 
horizontal line of pixels of the resized image. When the sub-
window slides, the Integral Image Generator reads 20 
vertical pixels from the 20 Line Buffers and performs 
vertical cumulative summation operation through an adder 
tree [10]. Thereafter, the leftmost values of the integral 
image are added to the result of the vertical cumulative sum 
of each row to generate a new vertical integral image. The 
rightmost values of the integral image are subtracted from all 
the other elements of each row, and the new vertical integral 
image is included to update the 20 × 20 integral image. The 
Integral Image Generator is designed in a pipeline-structure 
such that the integral image can be updated for each clock 
cycle. The Integral Image Generator is paused while the 
classification for the current sub-window is in progress. 
Subsequently, the integral image is immediately updated for 
the next sub-window once the classification is completed. 

C. Classifier 

The Classifier performs face classification on the input 
integral image of the sub-window. The Classifier comprises 
three parallel weak classifiers. The weak classifiers 
communicate with the block memory to compute the values 
of each feature by utilizing the feature parameters that 
contain information about the face. Each calculated feature 
value is compared with the feature threshold of the human 
face; the leaf values obtained from the comparison results are 
accumulated for each stage. The stage comparator compares 
the accumulated leaf value with the stage threshold value of 
the human face to determine the success of each stage. Even 
if the classification in one stage is unsuccessful, the sub-
window is determined not to be a face and the classification 
process is terminated immediately; thereafter, the 
classification for the next sub-window begins. On the 
contrary, if all the stages are successful, the sub-window is 
determined to be a face image, and a skip signal is generated. 
The skip signal is used to skip the unnecessary classification 
process of the sub-windows that are adjacent to the sub-
window wherein the face is detected. The skip signal is on 
until the IoU is less than the threshold value in the horizontal 
direction. Through this skip scheme, the proposed 
architecture improves the overall face detection processing 
speed. 

D. Face Merger 

The Face Merger stores the coordinates of the sub-
windows where the face is detected. When a face is detected 
in a new sub-window, the coordinates of the sub-window are 
compared with the previously stored coordinates. If the result 
of comparison of the two sub-window coordinates is within a 
certain distance, the compared sub-windows are merged to 
minimize the duplication detection of the same face. In the 
proposed architecture that uses sub-window of 20 × 20 
pixels, if the two sub-windows differ by less than 6 pixels 
horizontally, the IoU will be greater than 0.5. Therefore, the 
sub-windows that are within the horizontal distance of 5 
pixels from the sub-window wherein the face is detected will 
be merged; therefore, the classification of the sub-windows is 
skipped. To ensure that the proposed face detection 
architecture can detect up to 30 faces in one image, the Face 
Merger is designed to store 30 different face coordinates. 

IV. EXPERIMENTAL RESULTS 

The classifier of the proposed architecture is 
implemented using the haarcascade_frontalface_alt feature 
parameter of OpenCV [11]. The haarcascade_frontalface_alt 
was trained on the 20 × 20 frontal face sub-windows and 
contains a total of 22 stages and 2135 features. The number 
of features for each stage is summarized in Table I. 

The proposed architecture has been designed using 
Verilog HDL, and the resource usage has been measured 
using the Xilinx Virtex-5 LX115 field programmable gate 
array (FPGA) to compare with the architecture of [9]. The 
resource usage is similar to that in [9] because the proposed 
architecture is an extension of the architecture proposed in 
[9]. Table II compares the resource usage of the architecture 
in [9] and the proposed architecture of the current study. The 
proposed architecture uses a greater number of BRAMs 
because the Frame Grabber of the proposed architecture 
stores color images, rather than gray scale images. If the 
Frame Grabber of the proposed architecture would store 
solely gray scale images, the resource usage would almost be 
the same as that in [9]. In addition, the number of slice 
registers and slice look-up tables (LUTs) used in the 
proposed architecture is less than that used in [9] because 
this architecture uses a greater number of digital signal 
processers (DSPs). If the number of DSPs used is equal to 
that in [9], the functionalities of the Slice Register and Slice 
LUTs will become similar. 

Further, Table II also summarizes the resource usage of 
the face detection architecture based on whether the skip 
scheme is applied. The number of Slice Registers and Slice 
LUTs used are increased slightly, 0.1% and 0.5%, 
respectively, when the skip scheme is applied. The increase 
in resource usage occurs due to the additional control signals 
required for the Classifier and the Integral Image Generator 
to apply the skip scheme. However, the slight increase in 
resource usage due to the application of the skip scheme has 
a minor effect relative to the improvement in the processing 
speed. 
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Fig. 4. Test configuration of proposed architecture 

 
Fig. 5. Face detection result 

Table III compares the performance of the proposed face 
detection architecture and the architecture of [9] for 640 × 
480 (VGA) resolution images. Both the architectures use 
three parallel weak classifiers. The skip scheme decreases the 
processing time by 0.01 ms for 1 face, 0.75 ms for 6 faces, 
1.74 ms for 11 faces, and 7.18 ms for 30 faces. For 30 faces, 
the proposed skip scheme decreases the processing time by 
approximately 4.46%. In addition, the detection accuracy is 
similar to that of conventional methods because the skip 
scheme is used only when faces are detected. The proposed 
architecture is more effective when there are multiple faces 
in the image because the more the number of faces detected, 
the more classifications are skipped. 

The proposed architecture is implemented using Xilinx 
ZC706 and the test configuration is shown in Fig. 4. The 
camera interface board receives the video from the camera 
and transmits the video to FPGA every clock cycle. The 
proposed face detection architecture is implemented on the 
FPGA board. The FPGA board stores one image frame that 
is input from the camera interface board and outputs the final 
detection result back to the camera interface board when the 
face detection is completed. Thereafter, the camera interface 
board transmits the face detection result to the PC that 
visualizes and verifies the detection result through a USB 
interface. The face detection result obtained by implementing 
the proposed architecture using FPGA is shown in Fig. 5. 

V. CONCLUSION 

This paper proposes a face detection architecture that 
does not require classification of the sub-windows that are 
horizontally adjacent to the sub-window wherein the face is 
detected. Because the proposed architecture skips the sub-
windows that are eventually merged in the face merge step, 
the detection accuracy is the same as that of conventional 
methods. The proposed face detection architecture improves 
the overall processing speed by removing unnecessary 
iterations, while ensuring that the resource usage is similar to 
that of conventional methods. The processing speed of the 
proposed architecture exhibits an improvement of 4.46% 
compared to that of conventional methods, for face detection 
using 640 × 480 images (produced by the camera at 60 fps) 
containing 30 faces. Although the resource usage is slightly 
increased, it is insignificant compared to the improvement of 
the processing speed. The skip scheme is widely utilized 
because it can be applied not only to the proposed 
architecture, but also to all the architectures that entail 
classifications based on the iteration method. In the future, 
we intend to study the face detection architecture in depth to 
improve the performance and reduce the number of iterations 
further. 
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TABLE III. PERFORMANCE FOR FACE DETECTION SYSTEM 

Number of 

faces 

Architecture 

of [9] 

Proposed 

architecture 

(without skip 

scheme) 

Proposed 

architecture 

(with skip 

scheme) 

1 
133.14 ms 
(7.51 fps) 

138.48 ms 
(7.22 fps) 

138.47 ms 
(7.22 fps) 

6 
146.745 ms 

(6.81 fps) 

145.85 ms 

(6.86 fps) 

145.10 ms 

(6.89 fps) 

11 
152.66 ms 
(6.55 fps) 

152.08 ms 
(6.58 fps) 

150.34 ms 
(6.65 fps) 

30 - 
161.03 ms 

(6.21 fps) 

153.85 ms 

(6.50 fps) 
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