

Fig. 1. Process of cascade classifier

Hardware Architecture of a Haar Classifier Based

Face Detection System Using a Skip Scheme

Jongkil Hyun1, Junghwan Kim1, Cheol-Ho Choi1, and Byungin Moon1,2*
1Graduate School of Electronic and Electrical Engineering, Kyungpook National University, Daegu, Korea

2School of Electronics Engineering, Kyungpook National University, Daegu, Korea
*Email: bihmoon@knu.ac.kr

Abstract—Face recognition applications are being widely

studied owing to their extensive usability in the field of

computer vision. However, processing an entire image requires

a considerable amount of time. To reduce the processing time,

several algorithms that extract only the face from the image

during pre-processing are studied. Haar classifiers are

extensively used for the hardware implementation of face

detection algorithms that improve the processing speed of face

classification. This paper proposes a Haar classifier based face

detection architecture that removes unnecessary iterations

during classification to further improve the processing speed.

The proposed architecture improves the processing speed by

4.46% compared to that of conventional Haar classifier based

face detection architectures, for face detection using a VGA

image with 30 faces. The proposed architecture tends to

improve the processing speed as the number of faces in the

image increases while matching the detection accuracy of

conventional methods. Additionally, this architecture can be

widely applied to classification algorithms that are based on

iterations.

Keywords—FPGA, hardware architecture, face detection,

Haar classifier

I. INTRODUCTION

Computer vision and deep learning are becoming
increasingly significant with the rapid development of
computing technology. Accordingly, image processing of
human faces is being studied for identification purposes and
applications pertaining to augmented reality and internet of
things [1–3]. However, performing image processing on an
entire input image has the drawbacks of difficulties in real-
time operation and implementation using small devices; this
is because image processing consumes a considerable
amount of time and power owing to the large amount of
computation involved. To overcome these drawbacks, the
process of cropping only the facial area from the entire
image is necessary prior to implementation. Several studies
use face detection algorithms to classify only the facial area
within an entire image, which is subsequently used as an
input for image processing to improve the efficiency of the
entire image processing system [4–7]. Face detection
algorithms are classified into feature-based [4], appearance-

based [5], knowledge-based [6], and template-matching [7]
methods. Among these algorithm-based methods, the
feature-based method can detect the facial area in real-time
because it utilizes low-level features, such as color and
shape. The Haar classifier algorithm in the Viola–Jones
Object Detection Framework is a feature-based method that
detects human faces using the features trained by the
AdaBoost machine learning technique [8]. The Viola–Jones
algorithm has the advantage of being able to detect not only
the frontal face, but also the side of the face or the
accessories worn, depending on the learning data; further,
this algorithm entails a low computational cost and ensures a
high face detection rate. Moreover, because the classification
of the Viola–Jones face detection algorithm is relatively
simpler than the other algorithms, several studies are
attempting to further reduce the power consumption and
improve the processing speed by implementing the algorithm
on hardware [9]. In one of the studies that implemented the
Viola–Jones face detection algorithm on hardware, sub-
window and an image-resizing method were used to detect
multiple faces in one image; further, an architecture that
considerably improves the face detection processing speed
through the pipelining of classifiers was proposed [9]. The
face detection hardware architecture in [9] exhibits a
processing speed approximately 35 times faster than that of
the software-based Viola–Jones algorithm. Despite several
performance improvements, the processing speed is still
limited because the detection operation needs to be
performed repeatedly for all the sub-windows in the image.
Therefore, we propose a face detection hardware architecture
using a novel skip scheme that reduces the total number of
iterations and promotes a faster processing speed. The
classification of the sub-windows adjacent to the sub-
window wherein the face is detected is skipped, and
therefore, the total number of iterations is reduced.
Consequently, the processing speed of the proposed
architecture is improved.

II. SKIP SCHEME

Fig. 1 shows the process of a cascade classifier using
Haar-like features that are learned via AdaBoost. Each stage
of the process entails several Haar-like features. A sub-

978-1-7281-9201-7/21/$31.00 ©2021 IEEE

20
21

 IE
EE

 In
te

rn
at

io
na

l S
ym

po
si

um
 o

n
C

irc
ui

ts
 a

nd
 S

ys
te

m
s (

IS
C

A
S)

 |
97

8-
1-

72
81

-9
20

1-
7/

20
/$

31
.0

0
©

20
21

 IE
EE

 |
D

O
I:

10
.1

10
9/

IS
C

A
S5

15
56

.2
02

1.
94

01
11

4

Authorized licensed use limited to: Kyungpook National Univ. Downloaded on June 03,2021 at 07:31:29 UTC from IEEE Xplore. Restrictions apply.

Fig. 2. Calculation of intersection over union (IoU)

Fig. 3. Proposed face detection architecture

window is inputted into the cascade classifier and is
classified in each stage. Even if the classification in one stage
is unsuccessful, the sub-window is determined not to be a
face and the classification process is terminated immediately.
The same face can be detected repeatedly in the region that is
adjacent to a facial sub-window because the classification of
the sub-windows progresses pixel by pixel. Intersection over
union (IoU) is commonly used to merge the detection results
of the same face. The degree of proximity is determined by
calculating the IoU between the sub-windows, as shown in
Fig. 2. When the calculated IoU is greater than the threshold
value, the sub-windows are judged to be the same face and
merged. Since the results of the same face are merged, the
computation for the adjacent sub-windows can be skipped.
Therefore, the skip scheme does not accommodate redundant
computations of the sub-windows that are adjacent to a facial
sub-window. The proposed method improves the processing
speed because the number of unnecessary computations
performed by the cascade classifier is reduced.

III. HARDWARE ARCHITECTURE

Fig. 3 shows the proposed face detection architecture.
The Frame Grabber receives the pixel data from the camera
and stores the image of one frame in the Frame Buffer. The
image is retained until the face detection is realized. Then, a
new image is received and the Frame Buffer is updated
accordingly. The Scaler resizes the image stored in the
Frame Buffer and creates an image pyramid to detect faces
of various sizes within the image. The Cascade Classifier
that consists of the Integral Image Generator and Classifier,
performs face classification using the Haar classifier. The

Integral Image Generator generates an integral image for
each sub-window for the resized image. Thereafter, the
Classifier performs face classification using the integral
image. The Face Merger receives classification results and
coordinates for each sub-window from the Cascade
Classifier and merges the sub-windows to detect the
particular face. The conventional classifier must repeatedly
perform classification for all the sub-windows in the image.
In other words, because the number of iterations of the
classifier is large, the conventional classifier takes a long
time to classify the entire image. Reducing the number of
iterations is directly linked to improving the processing
speed of the entire face detection. Therefore, the proposed
architecture reduces the number of iterations by skipping the
classifications of the sub-windows that are adjacent to the
sub-window wherein the face is detected. Since the
information of the adjacent sub-windows are classified as the
same face, the sub-windows are eventually merged by the
Face Merger. The proposed architecture can improve the
processing speed while maintaining the face detection rate
without unnecessary iterations.

A. Scaler

The Scaler in the proposed architecture generates the
address of the stored image in the Frame Buffer to perform
image resizing. The Scaler resizes the image by applying the
nearest-neighbor interpolation method with a scale factor of
1.2. The scale factor is updated by multiplying 1.2 as the
downsizing step changes. The multiplication for scale factor
is implemented using a number of logic-level shifters and
adders. The row and column coordinates of the resized image
are produced by continuously accumulating the scale factor.
Subsequently, the Scaler generates an address for accessing
the Frame Buffer. The address uses only the integer value of
the coordinates. By using this address as the read address of
the Frame Buffer, the image can be downsized without
extensive computations. The Scaler produces a downscale
image pyramid through a total of 18 resizing steps to
facilitate the detection of faces of various sizes within the
image.

B. Integral Image Generator

The Integral Image Generator receives the resized image
pixel from the Scaler and stores it in the Line Buffers to

Authorized licensed use limited to: Kyungpook National Univ. Downloaded on June 03,2021 at 07:31:29 UTC from IEEE Xplore. Restrictions apply.

TABLE I. NUMBER OF FEATURES FOR EACH STAGE

Stage
Number of

features
Stage

Number of

features
Stage

Number of

features

0 3 8 56 16 140

1 16 9 71 17 160

2 21 10 80 18 177

3 39 11 103 19 182

4 33 12 111 20 211

5 44 13 102 21 213

6 50 14 135
Total 2135

7 51 15 137

TABLE II. HARDWARE UTILIZATION FOR FACE DETECTION SYSTEM

Architecture

of [9]

Proposed

architecture

(without skip

scheme)

Proposed

architecture

(with skip

scheme)

Slice Registers 21,902 12,931 12,944

Slice LUTs 84,232 67,590 67,934

BRAMs 97 176 176

DSP 48E 7 125 125

generate the integral image. Each Line Buffer stores one
horizontal line of pixels of the resized image. When the sub-
window slides, the Integral Image Generator reads 20
vertical pixels from the 20 Line Buffers and performs
vertical cumulative summation operation through an adder
tree [10]. Thereafter, the leftmost values of the integral
image are added to the result of the vertical cumulative sum
of each row to generate a new vertical integral image. The
rightmost values of the integral image are subtracted from all
the other elements of each row, and the new vertical integral
image is included to update the 20 × 20 integral image. The
Integral Image Generator is designed in a pipeline-structure
such that the integral image can be updated for each clock
cycle. The Integral Image Generator is paused while the
classification for the current sub-window is in progress.
Subsequently, the integral image is immediately updated for
the next sub-window once the classification is completed.

C. Classifier

The Classifier performs face classification on the input
integral image of the sub-window. The Classifier comprises
three parallel weak classifiers. The weak classifiers
communicate with the block memory to compute the values
of each feature by utilizing the feature parameters that
contain information about the face. Each calculated feature
value is compared with the feature threshold of the human
face; the leaf values obtained from the comparison results are
accumulated for each stage. The stage comparator compares
the accumulated leaf value with the stage threshold value of
the human face to determine the success of each stage. Even
if the classification in one stage is unsuccessful, the sub-
window is determined not to be a face and the classification
process is terminated immediately; thereafter, the
classification for the next sub-window begins. On the
contrary, if all the stages are successful, the sub-window is
determined to be a face image, and a skip signal is generated.
The skip signal is used to skip the unnecessary classification
process of the sub-windows that are adjacent to the sub-
window wherein the face is detected. The skip signal is on
until the IoU is less than the threshold value in the horizontal
direction. Through this skip scheme, the proposed
architecture improves the overall face detection processing
speed.

D. Face Merger

The Face Merger stores the coordinates of the sub-
windows where the face is detected. When a face is detected
in a new sub-window, the coordinates of the sub-window are
compared with the previously stored coordinates. If the result
of comparison of the two sub-window coordinates is within a
certain distance, the compared sub-windows are merged to
minimize the duplication detection of the same face. In the
proposed architecture that uses sub-window of 20 × 20
pixels, if the two sub-windows differ by less than 6 pixels
horizontally, the IoU will be greater than 0.5. Therefore, the
sub-windows that are within the horizontal distance of 5
pixels from the sub-window wherein the face is detected will
be merged; therefore, the classification of the sub-windows is
skipped. To ensure that the proposed face detection
architecture can detect up to 30 faces in one image, the Face
Merger is designed to store 30 different face coordinates.

IV. EXPERIMENTAL RESULTS

The classifier of the proposed architecture is
implemented using the haarcascade_frontalface_alt feature
parameter of OpenCV [11]. The haarcascade_frontalface_alt
was trained on the 20 × 20 frontal face sub-windows and
contains a total of 22 stages and 2135 features. The number
of features for each stage is summarized in Table I.

The proposed architecture has been designed using
Verilog HDL, and the resource usage has been measured
using the Xilinx Virtex-5 LX115 field programmable gate
array (FPGA) to compare with the architecture of [9]. The
resource usage is similar to that in [9] because the proposed
architecture is an extension of the architecture proposed in
[9]. Table II compares the resource usage of the architecture
in [9] and the proposed architecture of the current study. The
proposed architecture uses a greater number of BRAMs
because the Frame Grabber of the proposed architecture
stores color images, rather than gray scale images. If the
Frame Grabber of the proposed architecture would store
solely gray scale images, the resource usage would almost be
the same as that in [9]. In addition, the number of slice
registers and slice look-up tables (LUTs) used in the
proposed architecture is less than that used in [9] because
this architecture uses a greater number of digital signal
processers (DSPs). If the number of DSPs used is equal to
that in [9], the functionalities of the Slice Register and Slice
LUTs will become similar.

Further, Table II also summarizes the resource usage of
the face detection architecture based on whether the skip
scheme is applied. The number of Slice Registers and Slice
LUTs used are increased slightly, 0.1% and 0.5%,
respectively, when the skip scheme is applied. The increase
in resource usage occurs due to the additional control signals
required for the Classifier and the Integral Image Generator
to apply the skip scheme. However, the slight increase in
resource usage due to the application of the skip scheme has
a minor effect relative to the improvement in the processing
speed.

Authorized licensed use limited to: Kyungpook National Univ. Downloaded on June 03,2021 at 07:31:29 UTC from IEEE Xplore. Restrictions apply.

Fig. 4. Test configuration of proposed architecture

Fig. 5. Face detection result

Table III compares the performance of the proposed face
detection architecture and the architecture of [9] for 640 ×
480 (VGA) resolution images. Both the architectures use
three parallel weak classifiers. The skip scheme decreases the
processing time by 0.01 ms for 1 face, 0.75 ms for 6 faces,
1.74 ms for 11 faces, and 7.18 ms for 30 faces. For 30 faces,
the proposed skip scheme decreases the processing time by
approximately 4.46%. In addition, the detection accuracy is
similar to that of conventional methods because the skip
scheme is used only when faces are detected. The proposed
architecture is more effective when there are multiple faces
in the image because the more the number of faces detected,
the more classifications are skipped.

The proposed architecture is implemented using Xilinx
ZC706 and the test configuration is shown in Fig. 4. The
camera interface board receives the video from the camera
and transmits the video to FPGA every clock cycle. The
proposed face detection architecture is implemented on the
FPGA board. The FPGA board stores one image frame that
is input from the camera interface board and outputs the final
detection result back to the camera interface board when the
face detection is completed. Thereafter, the camera interface
board transmits the face detection result to the PC that
visualizes and verifies the detection result through a USB
interface. The face detection result obtained by implementing
the proposed architecture using FPGA is shown in Fig. 5.

V. CONCLUSION

This paper proposes a face detection architecture that
does not require classification of the sub-windows that are
horizontally adjacent to the sub-window wherein the face is
detected. Because the proposed architecture skips the sub-
windows that are eventually merged in the face merge step,
the detection accuracy is the same as that of conventional
methods. The proposed face detection architecture improves
the overall processing speed by removing unnecessary
iterations, while ensuring that the resource usage is similar to
that of conventional methods. The processing speed of the
proposed architecture exhibits an improvement of 4.46%
compared to that of conventional methods, for face detection
using 640 × 480 images (produced by the camera at 60 fps)
containing 30 faces. Although the resource usage is slightly
increased, it is insignificant compared to the improvement of
the processing speed. The skip scheme is widely utilized
because it can be applied not only to the proposed
architecture, but also to all the architectures that entail
classifications based on the iteration method. In the future,
we intend to study the face detection architecture in depth to
improve the performance and reduce the number of iterations
further.

ACKNOWLEDGMENT

This research was supported by Multi-Ministry
Collaborative R&D program (R&D program for complex
cognitive technology) through the National Research
Foundation of Korea (NRF) funded by MOTIE
(2018M3E3A1057248).

REFERENCES

[1] I. Aydin and N. A. Othman, “A new IoT combined face detection of
people by using computer vision for security application,” in Int.
Artif. Intell. Data Process. Symp., Sept. 2017, pp. 1–6.

[2] H. Peng, “Application research on face detection technology based on
OpenCV in mobile augmented reality,” Int. J. Signal Process. Image
Process. Pattern Recognit., vol. 8, no. 4, pp. 249–256, Apr. 2015.

[3] I. L. K. Beli and C. Guo, “Enhancing face identification using local
binary patterns and k-nearest neighbors,” J. Imaging, vol. 3, no. 3, pp.
1–12, Sept. 2017.

[4] W-C. Hu, C-Y. Yang, D-Y. Huang, and C-H. Huang, “Feature-based
face detection against skin-color like backgrounds with varying
illumination,” J. Inf. Hiding Multimedia Signal Process., vol. 2, no. 2,
pp. 123–132, Apr. 2011.

[5] I-O. Stathopoulou and G. A. Tsihrintzis, “Appearance-based face
detection with artificial neural networks,” Intell. Decis. Technol., vol.
5, no. 2, pp. 101–111. Feb. 2011.

[6] A. Z. Kouzani, F. He, and K. Sammut, “Commonsense knowledge-
based face detection,” in IEEE Int. Conf. Intell. Eng. Syst., Sept. 1997,
pp. 215–220.

[7] Z. Jin, Z. Lou, J. Yang, and Q. Sun, “Face detection using template
matching and skin-color information,” Neurocomputing, vol. 70, no.
4-6, pp. 794–800, Jan. 2007.

[8] P. Viola and M. J. Jones, “Robust real-time face detection,” Int. J.
Comput. Vis., vol. 57, no. 2, pp. 137–154, May 2004.

[9] J. Cho, S. Mirzaei, J. Oberg, and R. Kastner, “FPGA-based face
detection system using Haar classifiers,” in ACM/SIGDA Int. Symp.
Field-Program. Gate Arrays, Feb. 2009, pp. 103–112.

[10] D. Kim, J. Hyun, and B. Moon, “Memory-efficient architecture for
contrast enhancement and integral image computation,” in Int. Conf.
Electron. Inf. Commun., Apr. 2020, pp. 1–4.

[11] G. Bradski and A. Kaehler, Learning OpenCV: Computer Vision with
the OpenCV Library. O'Reilly Media, 2008.

TABLE III. PERFORMANCE FOR FACE DETECTION SYSTEM

Number of

faces

Architecture

of [9]

Proposed

architecture

(without skip

scheme)

Proposed

architecture

(with skip

scheme)

1
133.14 ms
(7.51 fps)

138.48 ms
(7.22 fps)

138.47 ms
(7.22 fps)

6
146.745 ms

(6.81 fps)

145.85 ms

(6.86 fps)

145.10 ms

(6.89 fps)

11
152.66 ms
(6.55 fps)

152.08 ms
(6.58 fps)

150.34 ms
(6.65 fps)

30 -
161.03 ms

(6.21 fps)

153.85 ms

(6.50 fps)

Authorized licensed use limited to: Kyungpook National Univ. Downloaded on June 03,2021 at 07:31:29 UTC from IEEE Xplore. Restrictions apply.

