

Improved Contrast Enhancement Algorithm for Night Vision Systems using Thermal Camera

Cheol-Ho Choi*, Jeongwoo Cha, Joonhwan Han, Hyunmin Choi, and Jungho Shin
Pangyo R&D Center, Hanwha Systems
Seongnam, Republic of Korea

Hanwha Systems

Introduction

- In a long-wave infrared (LWIR)-based thermal camera with an uncooled detector, a contrast enhancement algorithm is necessary to improve visibility
- Conventional contrast enhancement algorithms do not have consistent performance across various driving scenarios.

Proposed Algorithm

- **Depth Reduction**: Aim to decrease the bit depth from N-bit to 8-bit
- Gamma Correction: Generate a brightness level-adjusted image to handle extremely low or high pixel levels
- Histogram Frequency Calculation: Generate the merged histogram frequency look-up table
- Output Value Mapping: Generate a contrast-enhanced output image

Experimental Results

 When using our proposed algorithm, it demonstrates relatively consistent contrast enhancement performance in both the worst and best deriving scenarios

Conclusion

- We proposed an improved contrast enhancement algorithm consisting of gamma correction and histogram equalization
- In the worst driving scenario, it can be visually confirmed that the both the conventional and proposed algorithms perform well
- In the best driving scenario, it can be visually confirmed that our proposed algorithm has better visual performance than conventional algorithms