

Haar Filter Hardware Architecture for the Accuracy Improvement of Stereo Vision Systems

Cheol-Ho Choi^{1,0}, Younghyeon Kim¹, Jiseok Ha¹, and Byungin Moon^{1,2,*}

¹ Graduate School of Electronic and Electrical Engineering

² School of Electronics Engineering

Kyungpook National University, Daegu, Korea

E-mail: ^ogwe0725@knu.ac.kr, *bihmoon@knu.ac.kr

Introduction

- Semi-global matching (SGM) is widely used to compute the disparity map for stereo vision systems
- However, <u>mismatching can occur frequently</u>
 by noise and high-frequency components
- To overcome this problem, we <u>proposed the</u> <u>preprocessing method based on Haar filter</u>

Proposed Method

Input Images

2-D Haar Filter

$$I_{freq} = \sum_{\substack{k=0\\l=0}}^{N-1} h(i)I(x+k,,y+l)$$

h(i): Transformation function I(x + k, y + l): Input image k & l: Data point

I_{freq}: Image of <u>Frequency component</u> (Low-High, High-Low, High-High)

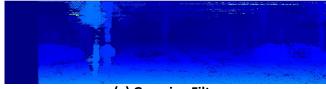
Weighting Factor Multiplication

Pixel Calibration

 $I_{desire} = I_{org} - I_{LH} - I_{HL} + I_{HH}$

 $I_{desired}$: <u>Output</u> image, I_{org} : <u>Input</u> image I_{LH} , I_{HL} and I_{HH} : Images <u>of frequency</u> <u>component multiplied by weighting factor</u>

Experiment Results (KITTI Dataset)


< Table 1. Performance Comparison >

	Non-Occlusion		Occlusion	
	MP	MER	AMP	MER
Gaussian	104704	22.48%	111007	23.83%
Proposed	101015	21.69%	107383	23.06%
Improvement	3.52%	-	3.26%	-

MP: Mismatching Pixels, MER: Mean Error Rate

Proposed method improve the MER of non-occlusion
and occlusion by 3.52% and 3.26%, respectively

< Figure 1. Results of Disparity Map >

(a) Gaussian Filter

(b) Proposed Method

(c) Comparison Result

Green color indicator : Improvement Red color indicator : Deterioration

< Table 2. Hardware Resource Usage >

Resource	Gaussian Filter	Propose Method		
Slice LUTs	110	137		
Slice Registers	180	191		
BRAMs	2	1		

Conclusion

- Proposed method improve the matching accuracy with reasonable hardware resource usages
- It is suitable for embedded stereo systems that require high matching accuracy